

Producing Battery Grade Lithium Chemicals from Complex Leach Liquors

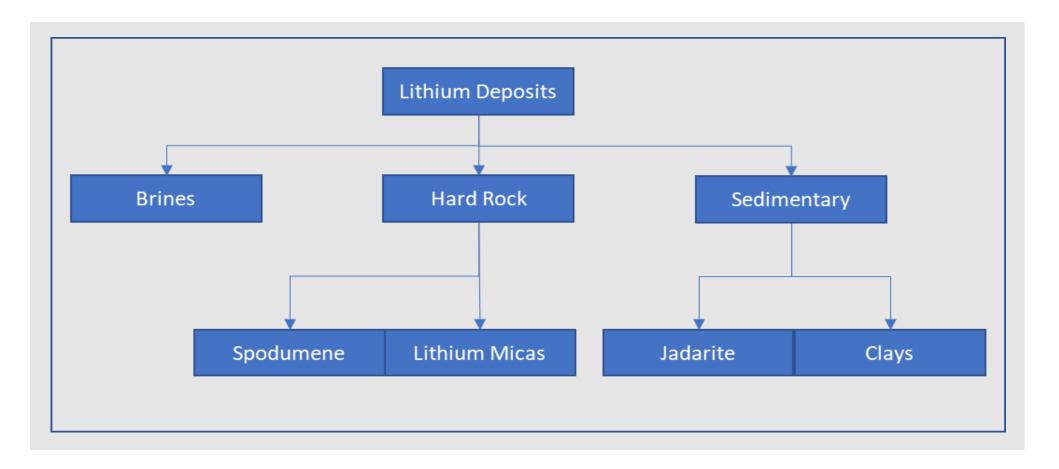
Grant Harman¹ & Stephen La Brooy² June, 2018

¹Lithium Consultants Australasia, West Perth, Australia

²Ausenco, Perth, Australia

Agenda

- 1. Sources for Lithium
- 2. Limiting Co-Extraction
- 3. Typical Leach Liquors
- 4. Battery Grade Impurity Targets
- 5. Removal Technologies
- 6. Basis of Choice
- 7. Conclusions



Sources for Lithium

Sources for Lithium

Sources of Lithium - Notes

- Lithium is currently sourced from either brine or hard rock.
- In the figure the three main options are shown including from sedimentary sources such as clays and jadarite.
- Some lithium is currently sourced from micas but the amount is very small and not significant.

Feed Minerals

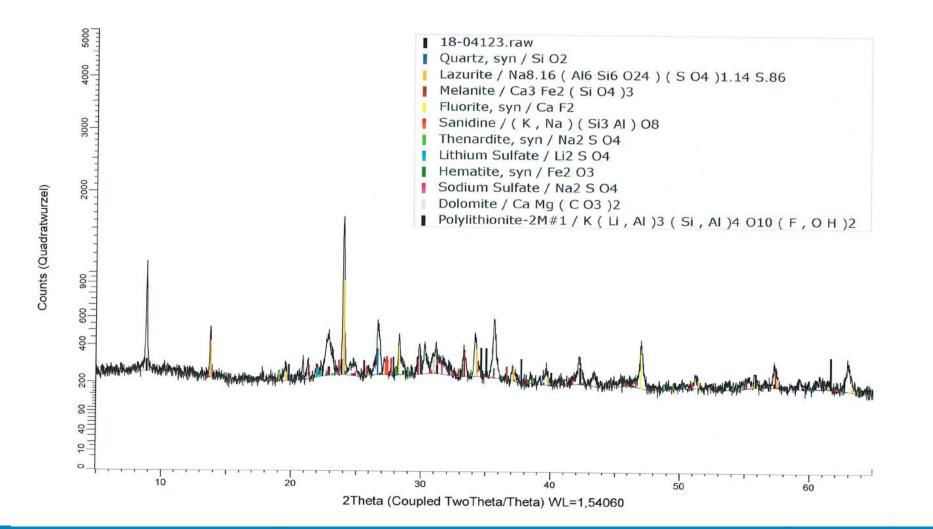
• Feed grades

• Impurities

Mineral	Main Locations	Chemical Formula	Mineral wt% Li ₂ O	Con Grade wt% Li ₂ O
Spodumene	Australia	Li ₂ OAl ₂ O ₃ (SiO ₂) ₄	8.0	5-7.5
Petalite	Zimbabwe	Li ₂ OAl ₂ O ₃ (SiO ₂) ₈	4.9	3-4
Zinnwaldite	Czech Republic	KLiFeAI(AISi ₃)O(F,OH)	2 - 5	3
Lepidolite	Zimbabwe	K(Li,Al) ₃ (Si,Al) ₄ O ₁₀ (F,OH) ₂	3.3-7.7	
Hectorite	Mexico, USA	Na _{0.3} (Mg,Li) ₃ Si ₄ O ₁₀ (OH) ₂	1.3	0.6-1.3
Jadarite	Serbia	LiNaSiB ₃ O ₇ (OH)	7.3	
Amblygonite	Canada	LiAIPO4(F,OH)	10.1	
Eucryptite	Zimbabwe	Li ₂ OAI ₂ O ₃ (SiO ₂) ₂	11.8	
Zabuyelite	China	Li ₂ CO ₃	40.4	

Ausenco

Feed Minerals - Notes


- The table shows the nine lithium minerals which are thought to be commercial.
- Currently spodumene is the dominant mineral source which, until recently, contributed 30% of all the lithium sources.
- Eucryptite, spodumene and petalite are all the same, differing only in the number of silica oxides.
- There is only one zinnwaldite and one jadarite project being progressed by EMH and Rio Tinto respectively.
- There are two advanced clay projects with the Bacanora Minerals, Sonoro project in Mexico being the most promising.
- Most of the secondary lithium minerals have a larger amount of elements in the mineral which are co-leached in varying degrees depending on the roasting/ leaching technology.

Limiting Co-Extraction

XRD of a Alkali Salt Roast of a Lithium Mica

Ausenco

Limiting Co-Extraction - Notes

- The most obvious way to simplify the cleaning of the leach solution is to limit the amount of the impurities being co-extracted with the lithium.
- Alternatively to prevent impurities being introduced in reagents or make-up water.
- The XRD shows the following points of interest:
 - Not all of the polylithionite is converted
 - The temperature of the roast is too low and the dolomite is not adequately reacted
 - The iron is trapped as melanite and hematite
 - The free silica is trapped as melanite, lazurite and sanidine
 - The fluoride is trapped as CaF₂

Changing Roast Conditions to Limit Impurities

	Units	Р	Ti	Zn	Nb	Та	Cs	Sr	F	Cl
Roasted Ore Leach Liquor	mg/L	0.9	<0.1	<0.1	<0.1	<0.1	0.6	1.2	140	2.8
Acid Wash of residue	mg/L	0.3	<0.1	7	<0.1	0.19	0.27	1.3	2,040	136

The roasting and leaching conditions can result in a major impact on the elements extracted.

In the table above the secondary lithium mineral was roasted with alkali salts followed by an acid wash.

The alkali roast limited the amount of impurities that were leached but an acid leach at ambient temperature of the residue with 5 wt% H_2SO_4 had a profound impact on the elements co-extracted.

Typical Leach Liquor from Lithium Minerals

Leach Liquors

	Units	Typical Spodumene	Petalite	Gypsum-lime Roast Leach McDermitt B Clay	175°C 920 g/L H₂SO₄ lepidolite leach	Typical Zinnwaldite CaSO₄-CaCO₃ roast leach	
Li	g/L	9.6	5.7	2.9	5.1	2	
Κ	g/L	0.2	0.45	13		5.5	
Na	g/L	1.28	1.42	3.1		0.2	
Rb	mg/L	-				325	
Ca	mg/L	100	145	540		180	
Mg	mg/L	30	12	30		20	
Al	mg/L	1,300	10	-	3,100	131	
Fe	mg/L	650	38	-	80	<100	
Mn	mg/L	40		-	170	<100	
Si	mg/L	40	33	-		50	
рН		1.6	0.95	Neut-alkaline		~10	

Based on limited information in public domain

Typical Impurities in a Lithium Leach Liquor

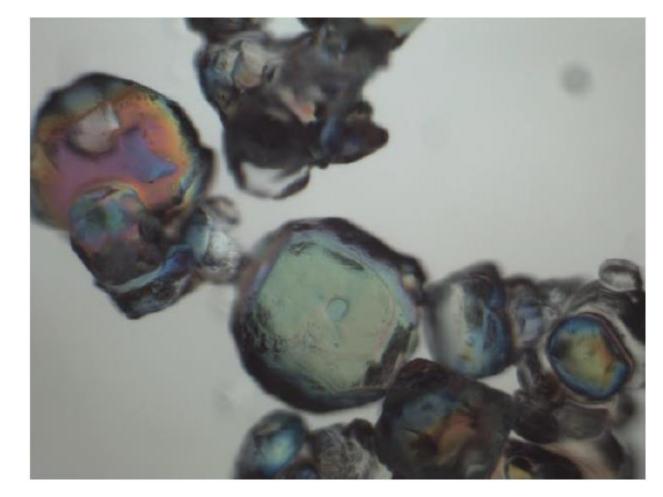
1	1																2
н																	Не
Hydrogen																	Helium
1.0079														-			4.0026
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
Lithium	Beryllium											Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.941	9.0122											10.81	12.011	14.007	15.999	18.998	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	Cl	Ar
Sodium 22.990	Magnesium 24.305											Aluminum 26.982	Silicon 28.086	Phosphorus 30.974	Sulfur 32.06	Chlorine 35.453	Argon 39.948
19	24.305 20	21	22	23	24	25	26	27	28	29	30	<u>20.982</u> 31	32	30.974 33	32.06 34	35.453 35	39.948 36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ĸ	Ca	30		v	C	IVIII	ге	CU		Cu	211	Ga	Germaniu	AS	Je	DI	N
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	m	Arsenic	Selenium	Bromine	Krypton
39.098	40.08	44.956	47.90	50.941	51.996	54.938	55.847	58.933	58.71	63.546	65.38	69.72	72.59	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.468 55	87.62 56	88.906	91.22 72	92.906 73	95.94 74	(98) 75	101.07 76	102.91 77	106.4 78	107.87 79	112.41 80	114.82	118.69	121.75	127.60 84	126.90	131.30
		57		-								81	82 Dk	83	-	85	86 D
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cesium 132.91	Barium 137.33	Lanthanum 138.91	Hafnium 178.49	Tantalum 180.95	Tungsten 183.85	Rhenium 186.21	Osmium 190.2	Iridium 192.22	Platinum 195.09	Gold 196.97	Mercury 200.59	Thallium 204.37	Lead 207.2	Bismuth 208.98	Polonium (209)	Astatine (210)	Radon (222)
87	88	89	104	100.55	105.65	100.21	108	109	110	1111	112	113	114	115	116	117	118
Fr	Ra	† Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
(223)	(226)	(227)	(267)	(268)	(271)	(272)	(270)	(276)	(281)	(280)	(285)	(284)	(289)	(288)	(293)	(294)	(294)

What are the Target Maximum Impurity Levels for Battery Grade

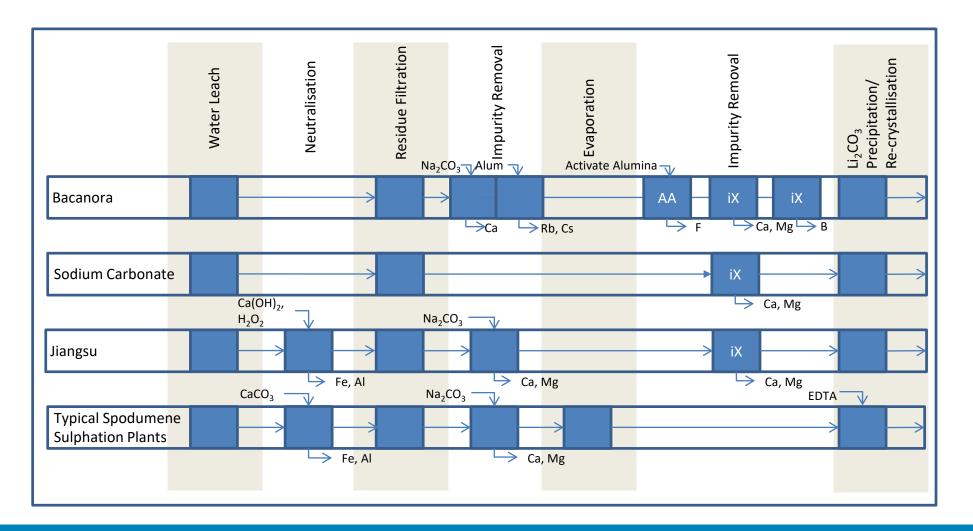
Target Maximum Impurity Levels

- The Chinese specification for battery grade lithium carbonate is shown in the table alongside.
- The specification for fluoride has been assumed based on EV specifications.
- Estimated target impurity levels calculated on the assumption that impurities concentrate up in the solids roughly 20 times.

	Chinese	
	Battery	Estimate
Chemical	Grade	Target
Properties	YS/T582-	Impurity
	(2013)	Level
	ppm	ppm
Ca [wt%]	50	2.5
Zn [wt%]	3	0.15
Mg [wt%]	80	4
Fe [wt%]	10	0.5
Ni [wt%]	10	0.5
AI [wt%]	10	0.5
Mn [wt%]	3	0.15
Pb [wt%]	3	0.15
Cu [wt%]	3	0.15
Si [wt%]	30	1.5
CI [wt%]	30	1.5
F [wt%]	50	2.5

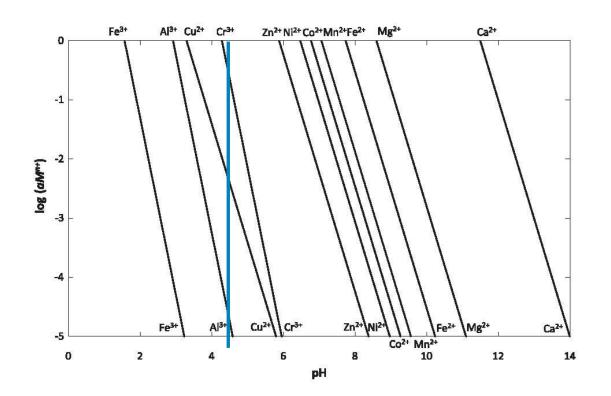


Impurity Removal Technologies Overview


Impurity Removal Technologies

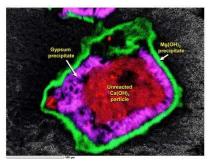
- Chemical Precipitation
- Crystallisation
- Adsorption
- Ion exchange
- Solvent Extraction

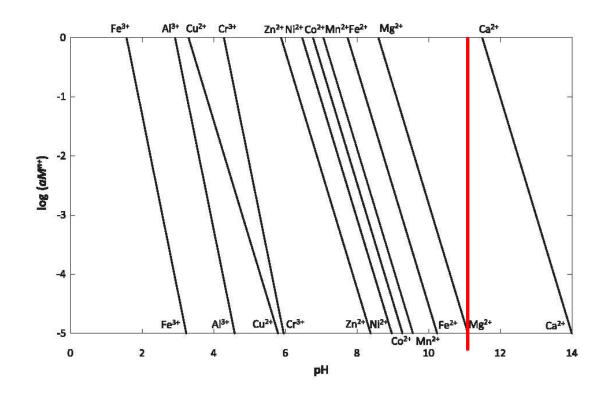
Comparison of Impurity Removal Techniques



Impurity Removal Chemical Precipitation

Chemical Precipitation – Fe & Al


- Hydroxide Precipitation
- Ferric iron & Aluminium
 - pH 4.5-5
 - limestone (or lime)
- Other reactions
 - Some calcium precipitates as gypsum
 - Some fluoride precipitates as CaF₂ / AIF₃ down to ~20 mg/L F


pH effect on hydroxide precipitation

Chemical Precipitation – Mn & Mg

- Hydroxide Precipitation
- Manganese & Magnesium
 - pH 11
 - Lime, caustic or LiOH

100 μm After Ineich et al. 2017

pH effect on hydroxide precipitation

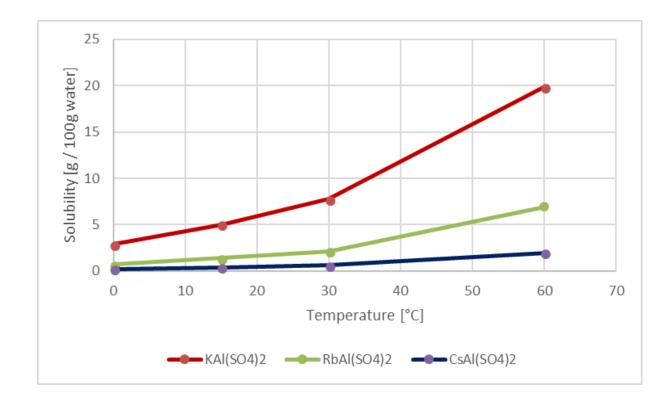
Chemical Precipitation - Ca

- Precipitation as calcium carbonate with soda ash
- Filtration
- Residual calcium around <40 mg/L

Chemical Precipitation of Calcium - Notes

- The addition of sodium carbonate is normally done based on stoichiometry with the amount typically in the region od 110% of 10% excess.
- Anecdotally, in the laboratory the amount of sodium carbonate that can be added can be far higher without any adverse effects of coprecipitation of other elements.
- However, in one Chinese plant there is reported precipitation of lithium with the calcium on the surfaces of the tank walls and the piping, and this scale was extremely hard and difficult to remove.
- Depending on the composition of the liquor the temperature and amount of sodium carbonate added might need to be added to adjusted to minimise or prevent scale formation.
- In order to prevent calcium precipitation in the evaporator downstream, adjusting the pH may reduce scaling of the evaporator.

Impurity Removal Crystallisation



Crystallisation – Rb & Cs

- Caesium & Rubidium
 - Add acid to ~pH 3
 - Add excess aluminium sulfate
 - Cool to crystallise mixed alums
 - Mixed alum solubility

 $KAI(SO_4)_2.12H_2O >$ RbAI(SO_4)_2.12H_2O > CsAI(SO_4)_2.12H_2O

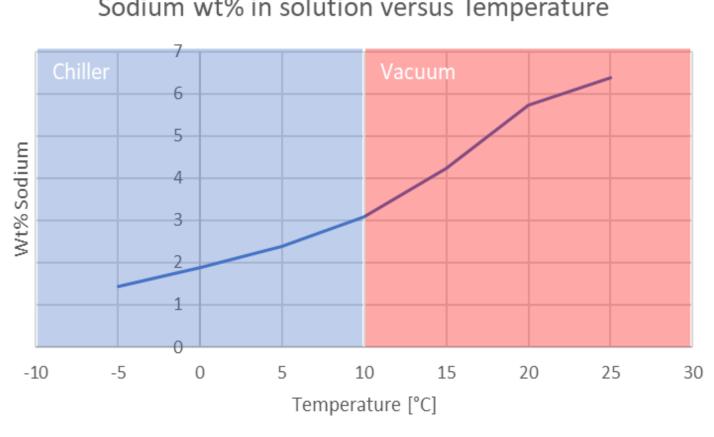
- Filter / centrifuge
- Add caustic to raise pH

Data from Hart, W.A., Beumel, F & Whaley, T.P., (2013) The chemistry of lithium, sodium, potassium, rubidium, cesium & francium (Pergamon Texts in Inorganic Chemistry)

Crystallisation of Rb & Cs - Notes

- Typically the amount of Rb removed is ~ 50% and 95% for Cs.
- Typically the amount of potassium removed depends on the temperature and is partially removed by cooling to commercially acceptable temperatures.
- The solubility of sodium is far higher and essentially no sodium is removed.
- Lithium appears to act dissimilarly to the other Group 1 analogues.
- Typically an great excess of alum is added and needs to be removed by the addition of sodium hydroxide. The Rb and Cs alums must be filtered before the addition of the sodium hydroxide as the group 1 alums will partially re-dissolve.

Crystallisation – B, Na, F


At higher concentrations

- Boron
 - boric acid (H₃BO₃ for jaderite feed)
- Sodium Sulfate bleed
 - Glauber's salt (Na₂SO₄.10H₂O)
- Fluoride
 - Khadamite (Al(SO₄)F.5H₂O (L-Max process)

Sodium Sulphate Removal by Cooling Crystallisation

- Cooling down to 10°C possible with vacuum flashing
- Cooling below 10°C requires a chiller

Sodium wt% in solution versus Temperature

Impurity Removal Adsorption & Ion Exchange

Adsorption - F

- Polishing fluoride removal
 - Alum impregnated activated alumina S--OH + H⁺ = S--OH₂⁺ S--OH₂⁺ + F⁻ = S--F + H₂O.
 - Residual fluoride concentration <1 mg/L

Removal of Fluoride - Notes

- Fluoride has been successfully removed using lime and alum but not down to the levels required to produce battery grade lithium carbonate.
- Large excess of alum has been shown to be required and the pH needs to be adjusted to around 3.
- The voluminous precipitate tends to remove up to 10% of the lithium. Washing of the precipitate is not practical as a fair amount of the fluoride is solubilised in the process which defeats the purpose of the removal step.
- Ion exchange not thought to be practical due to the large amount of waste liquor created.
- Similarly attempts to regenerate the activated alumina have not been very successful for the same reason as for ion exchange large amounts of waste liquor.

Polishing Ion Exchange – Ca, Mg, Al, B

- Resin columns in lead / lag configuration
- Aminophosphonic cation resin in monovalent cation form:
 - Calcium Ca²⁺
 - Magnesium Mg²⁺
 - Aluminium AI^{3+}
- Chelating anion resin with Nmethyl glucamine groups:
 - Boron $-BO_4^-$

Basis of Choice

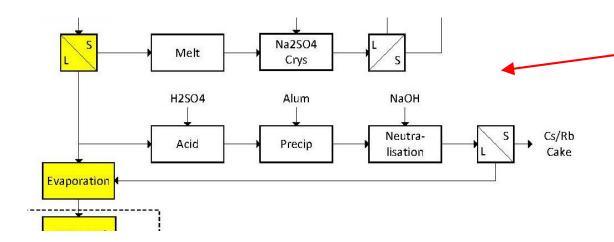
- Efficacy
 - Partial removal to control build up
 - More complete removal for polishing final solutions
- Lithium Losses
 - Co-precipitation
 - Entrained solution in residues
 - Process bleeds
 - By-products
- Opex
 - Cheapest not necessarily most cost effective

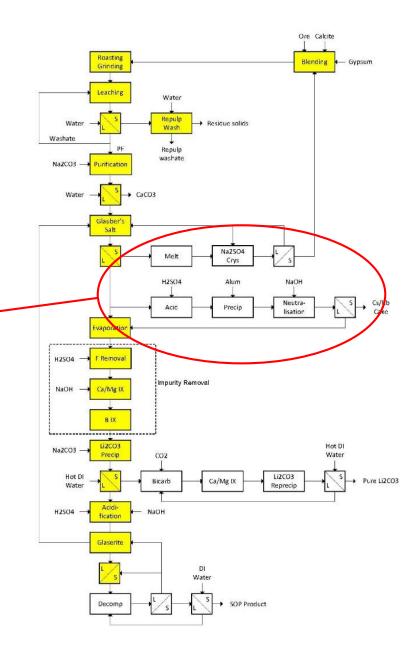
Conclusions

Conclusions

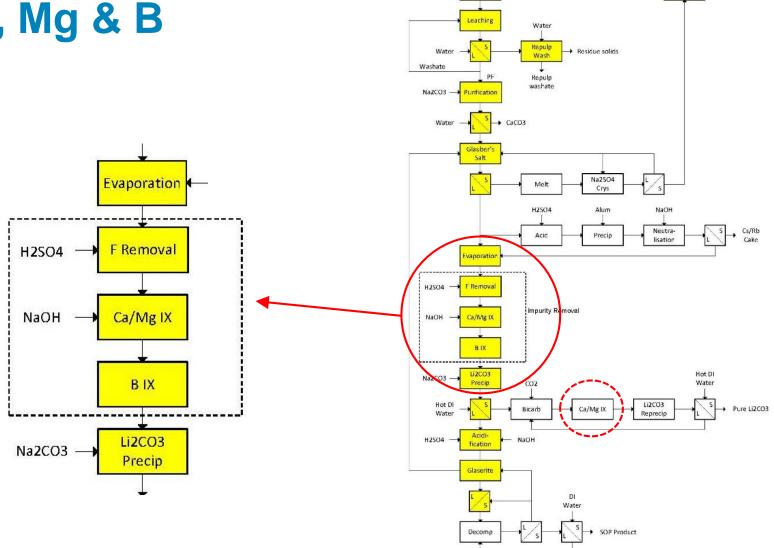
- Try not to get impurities into solution in the first place
- Understand the impurities that need to be removed
- Evaluate available clean up processes
 - Efficacy
 - Lithium Losses
 - Inherent Opex
 - Ease of integration into flowsheet
 - Additional Opex from integration into flowsheet
 - Final product quality
 - Overall lithium losses

Thank you.


www.ausenco.com


www.lithiumconsultants.com

Case Study – Cs & Rb


Caesium / Rubidium Removal by crystallisation of double alum

Case Study – F, Ca, Mg & B

- Fluoride activated alumina
- Calcium / Magnesium – aminophosphonic cation resin
- Boron chelating n-methyl glucamine anion resin

Roasting

Grinding

Ore Calcite

Blending

- Gypsum